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Ventilation of adjacent, connected chambers, forced in one chamber by an isolated
point source of buoyancy is investigated. There are floor- and ceiling-level external
openings in the forced and unforced chambers, respectively, while the partition
between the chambers has both a floor- and ceiling-level opening. The flow evolves
on the time scale over which the volume flux associated with the plume at the ceiling
would fill both chambers. The steady state in the forced chamber is analogous to
the single chamber flow described by Linden, Lane-Serff & Smeed (J. Fluid Mech.,
vol. 212, 1990, p. 309), with a well-mixed buoyant upper layer which is deeper than in
the single chamber flow due to the extra pressure drop at the upper interior opening.
The steady state in the unforced chamber inevitably exhibits vertical stratification,
and depends on the transient flow, all the opening areas, and the relative plan area of
the two chambers, as is verified by laboratory experiments. When the upper interior
opening is relatively large, the buoyant layer in the unforced chamber is deeper than
the buoyant layer in the forced chamber, which contradicts model predictions based
on the assumption that the layers are always well-mixed.

1. Introduction
Natural ventilation, by which air circulations within buildings are forced by non-

mechanical means, is a cost-effective and energy-efficient way of controlling indoor
climate in the presence of internal sources of heat. Although the equations that
describe buoyant plumes and thermals have been well-known for some time (see
for example Morton, Taylor & Turner 1956; Turner 1969; Baines & Turner 1969;
Germeles 1975; Manins 1979; List 1982; and Worster & Huppert 1983), it is
only within the past two decades that the benefits of applying this knowledge to
architectural design have become fully appreciated (see the review of Linden 1999 for
details). Most of the studies that have been performed to date consider the ventilation
of a single chamber that is connected to the exterior by one or more openings. Analyses
have examined both steady-state and transient behaviour of isolated (Linden, Lane-
Serff & Smeed 1990, herein referred to as LLS90; Kaye & Hunt 2004) and distributed
sources (Gladstone & Woods 2001), as well as the effect of a finite-source volume flux
(Caulfield & Woods 2002; Woods, Caulfield & Phillips 2003).

The properties of the final steady state may be determined directly from the
source conditions and/or the chamber geometry. Whereas interesting phenomena
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Figure 1. Schematic figure of the flow geometry.

may be encountered during the transient flow approach toward steady state (e.g. the
‘overshoot’ of layer depth remarked upon by Kaye & Hunt 2004), the flow’s time
history does not affect the steady state.

To demonstrate that this behaviour is not generic, we consider the flow shown
schematically in figure 1. There is a single point source of (constant) buoyancy flux F0

in the left-hand (forced) chamber of depth H , and cross-sectional area Af . (We follow
the convention that upper-case italic letters are used for dimensional quantities.)
This chamber has three openings, with in general different effective cross-sectional
areas. (For simplicity of exposition, we absorb experimentally determined discharge
coefficients into the various opening areas, and assume that the pressure is constant at
openings, i.e. they have infinitesimal depth. This ensures unidirectional flow through
each opening.) There is one opening (opening ‘i’ in the figure) to the exterior at the
bottom of the chamber Z = 0, with effective cross-sectional area Ai . There are also
openings at the bottom (Z = 0) and top (Z = H ) of the chambers (labelled ‘b’ and ‘t’
in the figure) connecting the left-hand forced chamber to the right-hand (unforced)
chamber (of cross-sectional area Au). These openings in the central partition have
effective cross-sectional areas Ab and At respectively. Finally, the unforced chamber
has an upper opening at Z = H to the exterior (labelled ‘o’) with effective cross-
sectional area Ao. Although filling-box flows in interconnected chambers have been
considered before (see Wong & Griffiths 2001; Lin & Linden 2002) the principal
focus has been on the transient dynamics. The flow geometry considered here tends
towards a steady state, which nevertheless is determined by the flow’s time history.

In § 2, we review the the single chamber model of LLS90, focusing on the aspects of
the flow which are particularly relevant to the more general interconnected chamber
flow considered here. In § 3, we develop models to describe both the steady-state and
transient flows in the interconnected chamber flow, treating separately cases where
the buoyant layers in each chamber are assumed to be well-mixed or stratified at
intermediate times. In § 4 we discuss the important characteristics of the results of
these models, briefly considering some of the implications for real ventilation flows.
In § 5 we compare the results of laboratory experiments to our theoretical models,
and in § 6 we draw conclusions.
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2. Single chamber dynamics
LLS90 considered the flow in a single forced chamber with high- and low-level

openings to the exterior (i.e. the flow shown in figure 1 in the absence of the central
partition). As the buoyant plume fluid rises to the top of the chamber, a filling box
flow is assumed to develop (essentially an assumption on the aspect ratio of the
chamber: see Baines & Turner 1969; Hunt, Cooper & Linden 2001 and Conroy,
Llewellyn Smith & Caulfield 2005 for more detailed discussion) with a buoyant layer
deepening towards the floor. The presence of this buoyant layer leads to the pressure
Pf (H ) within the chamber at Z = H becoming greater than the pressure in the exterior
Pe(H ) at that height. This pressure differential drives a flow Qo through the upper
opening, which is given by Bernouilli’s equation

Qo = Ao

[
2

ρe

(Pf (H ) − Pe(H ))

]1/2

, (2.1)

where ρe is the (constant) exterior reference density, and a discharge coefficient has
been absorbed into the effective area Ao. This outflow is balanced by an equal and
opposite inflow (by convention negative) through the lower opening ‘i’, i.e.

Q0 + Qi = 0. (2.2)

Assuming that the pressure inside and outside the chamber varies hydrostatically,

Pe(0) − Pf (0)

ρe

=
G

ρe

∫ H

Hf

(ρe − ρf ) dZ − Pf (H ) − Pe(H )

ρe

=

∫ H

Hf

G′
f dZ − Pf (H ) − Pe(H )

ρe

,

(2.3)

where Hf is the interface location of the buoyant layer, ρf (Z, T ) is the density within
this buoyant layer, G is the acceleration due to gravity and G′

f is the reduced gravity
of the buoyant fluid in this layer. Using Bernouilli’s equation at Z = 0, we obtain

Qi = −Ai

[
2

∫ H

Hf

G′
f dZ − Q2

o

A2
o

]1/2

, (2.4a)

→ −Qi = Qo =
AoAi[

1
2

(
A2

o + A2
i

)]1/2

(∫ H

Hf

G′
f dZ

)1/2

≡ A�(If )1/2, (2.4b)

defining the effective opening area parameter A� and the buoyancy integral of the
forced chamber If .

The equation for conservation of mass, under the assumption that diffusive processes
are insignificant compared to advective processes, is

∂

∂T
ρf = −Wf

∂

∂Z
ρf , (2.5)

where Wf is the vertical velocity of the buoyant fluid. For the flow to be in steady state,
either ∂ρf /∂Z = 0, or Wf = 0. At steady state, the density is constant everywhere except
across a stationary interface at Z = Hf (t → ∞) ≡ Hl between a well-mixed buoyant
layer and a denser layer of exterior fluid.

In the single chamber flow, the buoyancy integral If increases monotonically
with time towards a steady-state value, although the location of the interface does
overshoot its steady-state value. The depth of the buoyant layer increases due to
the ‘filling box’ flow of plume fluid entering the layer, and decreases due to the
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‘draining’ outflow Qo. Qo increases monotonically with If , while the plume volume
flux decreases monotonically as the depth of the layer increases. Since we assume that
the plume fluid spreads instantaneously horizontally with no vertical mixing upon
arrival at the ceiling of the chamber, the buoyant layer always exhibits some vertical
stratification for t < ∞.

The depth of the stratified layer always reaches its steady-state value before If

has grown to its ultimate steady-state value. This mismatch inevitably leads to an
overshoot in the depth of the buoyant layer, as Qo <Qp(Hl) at this time. (Kaye &
Hunt 2004 discuss the time-dependent behaviour of this system in some detail, under
the different simplifying assumption that the buoyant layer is well-mixed for all time,
which leads to the different conclusion that the interface location does not always
overshoot. Although for flows in single chambers this difference of approach leads to
only slight quantitative differences, as we discuss in more detail below, the well-mixed
assumption cannot be applied to both interconnected chambers without leading to
significant quantitative error.)

As the buoyancy flux F0 in the plume is constant before its arrival at the interface,
the reduced gravity of the plume fluid G′

p at the interface can be simply determined
from the classical point-source similarity solution of Zeldovich (1937) and Morton
et al. (1956):

G′
p(Z) =

F0

Qp(Z)
=

F0

λF
1/3
0 Z5/3

, λ =
6α

5

(
9απ2

10

)1/3

, (2.6)

where α is the (assumed universal) entrainment constant. The requirements of constant
steady-state density and volume of the buoyant layer are that G′

f = G′
p(Hl) and

Qp(Hl) = Qo, and so the purely geometric condition defined by LLS90 must hold:

λ3H 5
l = A2

�(H − Hl). (2.7)

Furthermore, the steady state is completely independent of the flow’s time history.

3. Interconnected chamber dynamics
For interconnected chambers, as shown in figure 1, (2.2) must still hold. Considering

each chamber separately, we obtain

Qb + Qt = Qo = −Qi, (3.1)

where Qb and Qt are defined as being positive for outflow from the forced chamber.
There is always outflow through opening ‘o’, inflow through opening ‘i’, and outflow

from the forced chamber through opening ‘t’. This implies that Pf (H ) > Pu(H ) > Pe(H )
and Pe(0) > Pf (0), and so

Qo = Ao

[
2

ρe

(Pu(H ) − Pe(H ))

]1/2

, Qt = At

[
2

ρe

(Pf (H ) − Pu(H ))

]1/2

, (3.2)

Qi = −Ai

[
2

ρe

(Pe(0) − Pf (0))

]1/2

. (3.3)

where we have absorbed any discharge coefficients into the effective areas.
Assuming that the pressure distribution is hydrostatic, we obtain

Pe(0) − Pf (0)

ρe

= If − ([Pf (H ) − Pu(H )] + [Pu(H ) − Pe(H )])

ρe

, (3.4)
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and so

Qi

Ai

= −
(

2If − Q2
o

A2
o

− Q2
t

A2
t

)1/2

→ −Qi = Qo = A�

(
If − Q2

t

2A2
t

)1/2

. (3.5)

Comparing (2.4) to (3.5), the presence of the unforced chamber, and hence the
associated two-stage pressure drop between the forced chamber and the exterior
at Z = H , manifests itself by a reduction in the ventilation flow through the entire
system.

3.1. Steady-state flow for interconnected chambers

In steady state, since the depths of both buoyant layers are constant, Qb(0) = 0 and
hence Pf (0) = Pu(0). Therefore

0 =
2

ρe

[Pf (0) − Pu(0)] =
2

ρe

[Pf (H ) − Pu(H )] + 2

∫ H

Hu

G′
u dZ − 2If , (3.6a)

=
Q2

t

A2
t

− 2(If − Iu), (3.6b)

where G′
u = G(ρe − ρu)/ρe is the reduced gravity of the buoyant layer in the unforced

chamber, and Iu is the related buoyancy integral. Combining this expression with
(3.5), we obtain

Q2
i = Q2

t = Q2
o = A2

�Iu =
2A2

oA
2
i A

2
t If

A2
oA

2
i + A2

oA
2
t + A2

i A
2
t

= A2
�If

(
2A2

t

A2
� + 2A2

t

)
. (3.7)

At steady state, the properties of the buoyant layer in the forced chamber can be
simply determined, and the depth and reduced gravity of this layer are completely
independent of the flow’s time history. The volume flux out of the buoyant layer in
the forced chamber (here Qt ) must be balanced by the volume flux into the layer
from the plume, while the density of the (well-mixed) layer in the forced chamber
must be balanced by the incoming density of the plume, and so the analogue of (2.7)
is

λ3H 5
f ∞ = A2

�(H − Hf ∞)

(
2A2

t

A2
� + 2A2

t

)
= A2

†(H − Hf ∞), (3.8)

defining a new effective opening area A† for the interconnected chamber flow. Since
A† � A�, the steady-state buoyant layer is always deeper in the interconnected forced
chamber than in the single chamber (i.e. Hf ∞ <Hl where Hl is defined in (2.7)) and
hence the ventilation flow Qo is always less, due to the extra pressure drop across the
unforced chamber.

When At � A�, A† � A�, and so the presence of the partition has little influence on
the steady-state flow. Conversely, when At � A�, the interface location is completely
dominated by the value of At , as (3.8) reduces to λ3H 5

f ∞ � 2A2
t (H − Hf ∞). This is

analogous to the behaviour of the single chamber flow, as noted in LLS90, where if
Ai and A0 are very different in size, A� �

√
2 min(Ai, Ao), and the flow is controlled

by the smaller of the two opening areas.
From (3.7), the steady-state flow can also be related to the buoyancy integral Iu for

the unforced chamber, in a form identical to the condition (2.4b) which pertains in
the single chamber flow, since at steady state Pf (0) = Pu(0). Therefore, the pressure
difference driving the flow through Qi is the same as the pressure difference between
the exterior and the unforced chamber at Z = 0. However, everywhere except at the
ceiling of the unforced chamber, where since Qt = Qo the buoyant fluid entering
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the unforced chamber immediately leaves, the steady-state flow is stationary in the
unforced chamber, and so the properties of the unforced layer cannot be determined
without considering the complete flow history. Indeed, since the buoyant layer develops
transiently due to more buoyant fluid flowing into the unforced chamber (through
opening ‘t’ from the forced chamber) than is driven out to the exterior through
opening ‘o’ to the exterior, the buoyant layer in the unforced chamber must be
vertically stratified in a way determined by the transient evolution.

3.2. Transient flow dynamics for interconnected chambers

As we discuss in Appendix A, it is possible to establish that Qb � 0, and so there
is never any flow through opening ‘b’ from the forced chamber into the unforced
chamber, if the buoyant layer in the unforced chamber is assumed to be stratified.
Therefore,

Qb = −Ab

(
2

ρe

[Pu(0) − Pf (0)]

)1/2

= −Ab

[
2(If − Iu) − Q2

t

A2
t

]1/2

, (3.9)

using (3.2), closing the transient system. It is convenient for the subsequent analysis
to non-dimensionalize the flow quantities.

From the properties of the steady state, A� still figures prominently, and so we use
A� to scale the two interior opening areas

at =
At

A�

, ab =
Ab

A�

, a† =
A†

A�

=

(
2a2

t

1 + 2a2
t

)1/2

. (3.10)

(We follow the convention that lower-case italic letters are used for non-dimensional
quantities.) Volume fluxes are non-dimensionalized with the volume flux QH which
a point-source plume with buoyancy flux F0 satisfying the similarity solution (2.6)
would have at the ceiling, i.e.

qo =
Qo

QH

, qi =
Qi

QH

, qt =
Qt

QH

, qb =
Qb

QH

, QH = λF
1/3
0 H 5/3. (3.11)

The natural time scale for the flow is the filling-box time scale for the two chamber
system, defined here as

Tf =
(Af + Au)H

QH

, (3.12)

i.e. the time that a source with volume flux QH would take to fill both chambers
(with total cross-sectional area Af + Au). The relative volume of the two chambers
plays a critical role in the time-dependent behaviour of the system, and so we define
the non-dimensional quantity au = Au/Af . We also scale vertical distances with the
depth H , i.e. z = Z/H , hf = Hf /H , hu = Hu/H , hf ∞ = Hf ∞/H , and hl = Hl/H .

We choose to use H and G′
H = F0/QH , the reduced gravity at the ceiling of a

point-source plume with buoyancy flux F0 to scale the buoyancy integrals, i.e.

iu =
Iu

G′
HH

=
λH 2/3Iu

F
2/3
0

, if =
λH 2/3If

F
2/3
0

. (3.13)

Therefore, at steady state

iu = a2
† if , (3.14)
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while, in general

qo + qi = 0, qb + qt = qo, 2q2
o +

q2
t

a2
t

=
2if

µ2
, (3.15)

where µ is the non-dimensional opening area parameter (or equivalently time scale
ratio) as defined in Kaye & Hunt (2004), i.e.

µ2 =
λ3H 4

A2
�

=
T 2

d

T 2
f

. (3.16)

The draining time scale Td is defined as

Td =
(Af + Au)H

A�(G
′
HH 1/2)

. (3.17)

This is the characteristic time scale for buoyant fluid with this reduced gravity to
drain from the two chambers, in the absence of the internal partition. (See Kaye &
Hunt 2004 for a more detailed discussion.)

Non-dimensionalizing (3.9), we obtain

q2
b

a2
b

=
2(if − iu)

µ2
− q2

t

a2
t

. (3.18)

Combining this equation with (3.15), it is apparent that, provided qo � qt ,

iu � µ2q2
o � a2

† if , (3.19)

and so a2
† if − iu � 0, and iu approaches its steady state value from below for

circumstances where the buoyant layer in the unforced chamber is assumed to
remain stratified, since as discussed in Appendix A, the flow through opening ‘b’ is
unidirectional.

Using (3.15) and (3.18), to eliminate qb and qt , q2
o must satisfy a quadratic equation.

Requiring that qo converges towards its steady-state value qo →
√

iu/µ, we obtain

q2
o =

iu

µ2
+

4a2
biu +

[
1 + 2

(
a2

t + a2
b

)][
1 + 2a2

t

][
a2

† if − iu
]

µ2
[
1 − 4

(
a2

b − a2
t

)
+ 4

(
a2

b + a2
t

)2]
−

[
16a4

bi
2
u + 16a2

b

(
1 + 2a2

t

)(
a2

† if − iu
)(

a2
biu + a2

t if
)]1/2

µ2
[
1 − 4

(
a2

b − a2
t

)
+ 4

(
a2

b + a2
t

)2] . (3.20)

All the other volume fluxes can be determined from (3.15).
We assume that the plume is rising from a ‘point’ source of buoyancy flux alone. We

also assume that the plume is sufficiently narrow that it may be modelled as isolated,
and that, at all heights within the plume πB2 � Af , where B is the plume radius.
This conventional assumption (see Conroy et al. 2005 for a detailed discussion) also
ensures that the aspect ratio of the chamber is sufficiently small for a quasi-steady
approximation to be made, so the plume rising through the chamber may be treated
as flowing through a time-independent ambient, which in turn evolves on a very much
slower time scale.

Also, as mentioned in the Introduction, we assume that the aspect ratio is sufficiently
small that a ‘filling box’ flow can develop, with the plume fluid arriving at the top
of the chamber and spreading to form a buoyant layer (thus leading to stratification
in the chamber) rather than driving an overturning, mixing the fluid in the entire
chamber. Finally, we assume that the flow is at sufficiently high Reynolds numbers
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that advective processes dominate diffusive processes. We make a similar assumption
in the unforced chamber, so that flow through opening ‘t’ is not fast enough to
overturn the buoyant layer in the unforced chamber. Nevertheless, for solving the
transient problem, four different possibilities exist, since the buoyant layer in each
chamber can be modelled as either well-mixed or continuously stratified.

3.2.1. Stratified buoyant layer in the forced chamber

In the forced chamber, using the non-dimensionalization chosen, the plume
equations are

∂

∂z
q =

5

3
m1/2,

∂

∂z
m =

4f q

3m
,

∂

∂z
f = −q

∂

∂z
g′

f , (3.21a–c)

where

q =
Q

QH

, M =
M

MH

=
M(

9
10

απ2F0H 2
)2/3

, f =
F

F0

, g′
f =

G′
f

G′
H

, (3.22)

and the boundary conditions are q(0) = 0 = m(0), f (0) = 1. The system is closed by
considering the equation for conservation of mass (2.5) at all heights in the forced
chamber. Under the above assumptions, the return velocity Wf of ambient fluid in the
forced chamber is −(Q − Qt )/Af , as there is a net flow of Qt through the chamber.
Therefore, g′

f satisfies

∂

∂t
g′

f = −(q − qt )(1 + au)
∂

∂z
g′

f , (3.23)

with initial condition g′
f (z) = 0.

Equations (3.21) and (3.23) can be solved using the method of Germeles (1975), who
developed a numerical model for single chamber flow to solve (3.21) and (3.23). The
plume equations are integrated through the ambient chamber stratification, modelled
by a sufficiently large number of discrete layers, separated by interfaces. The location
of each interface is then updated using (3.23). At every time step, a new layer is
added at the ceiling of the chamber, with reduced gravity g′

p(1) given by the reduced
gravity of the arriving plume fluid, which is assumed to spread out instantly without
any mixing. This model can be straightforwardly generalized to the interconnected
chamber case by tracking correctly the volume flux qt and the reduced gravity of
fluid which leaves through opening ‘t’ at any time instant. Using (3.15) and (3.20),
qt can be determined provided iu and if are determined. The integrals if and iu are
calculated directly from the chambers’ reduced gravity distribution.

3.2.2. Well-mixed buoyant layer in the forced chamber

As noted by Baines & Turner (1969), and discussed by Worster & Huppert (1983),
the density stratification which develops typically has a weak variation through much
of the buoyant layer, with a region of strong variation near the base. Also, as noted
by Kaye & Hunt (2004), in laboratory experiments, there is inevitably some mixing as
the plume fluid spreads at the ceiling of the chamber. It is appealing to assume that
the layer is well-mixed (mimicking the steady state) and so only the interface location
hf and the well-mixed layer reduced gravity g′

f need to be modelled. We obtain

d

dt
hf = (1 + au)

(
qt − h

5/3
f

)
,

d

dt
g′

f =
(1 + au)

(
1 − g′

f h
5/3
f

)
1 − hf

. (3.24)
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These coupled equations then can be used to describe the evolution of the buoyant
layer in the forced chamber, once again provided qt can be identified, and hence
provided iu is known, as in this case, there is the simple relationship if = g′

f (1 − hf ).

3.2.3. Stratified buoyant layer in the unforced chamber

Since the unforced chamber is supplied horizontally through opening ‘t’, the
likelihood of substantial overturning within the chamber as the buoyant layer
develops is not as significant as in the forced chamber, and the steady state is
not necessarily well-mixed. As already noted qo � qt at all times, and so the buoyant
layer is continually supplied by incoming fluid from the forced chamber through
opening ‘t’, of reduced gravity g′

t = g′
p(1) if the forced chamber is assumed to be

stratified, or g′
t = g′

f if it is assumed to be well-mixed. If we assume that there is no
mixing in the unforced chamber, the net volume flux of qt − qo spreads out layer by
layer, developing a vertical stratification in the unforced chamber. The depth of this
layer, and the value of the integral iu can be calculated by tracking all these incoming
layers, which descend at the same non-dimensional speed (qo − qt )(1 + au)/au in the
unforced chamber.

3.2.4. Well-mixed buoyant layer in the unforced chamber

Of course, if it is assumed that the fluid in the unforced chamber is well-mixed, it
can be characterized by a single reduced gravity g′

u and the interface location hu. The
equations for the evolution of these quantities then take the form

d

dt
hu =

(qt − qo)(1 + au)

au

,
d

dt
g′

u =
(g′

t − g′
u)(1 + au)qt

au(1 − hu)
, (3.25)

where g′
t is the reduced gravity of the fluid entering through opening ‘t’. This last

equation is particularly interesting, as it does not involve the flow through opening ‘o’
at all. Indeed, as we discuss in Appendix B, for this well-mixed model it is possible for
the flow to reverse direction through opening ‘b’, and hence for the interface location
hu in the unforced room to overshoot its final position. The steady state associated
with this well-mixed model occurs when qt = qo, and hence the two interfaces are
stationary. However, (3.25) implies that at steady state g′

f = g′
u. Therefore, from (3.7),

at steady state,

g′
u(1 − hu) = a2

†g
′
f (1 − hf ) → (1 − hu) =

2a2
t

1 + 2a2
t

(1 − hf ), (3.26)

and so the buoyant layer depth in the unforced chamber is predicted to be always
less than the buoyant layer depth in the forced chamber.

We are not aware of a careful analysis of the dependence of the predictions of
transient models on mixing assumptions within developing layers, even in the single
chamber case. Here we will compare the results of the two extreme situations, i.e.
we will assume that both chambers remain stratified (which we will refer to as the
S-S model, denoting stratification in both chambers) or that both may be modelled
with well-mixed buoyant layers (referred to as the M-M model, denoting well-mixed
models in both chambers).

There is still a very large parameter space which could be considered. We choose
a single value of µ = 4, which corresponds to a steady-state interface for the single
chamber flow at the midpoint hl = 1/2 of the chamber. This choice avoids extreme
values for the buoyant layer depth in the forced chamber of the interconnected
chamber flow. We are considering a situation where the draining time scale Td (3.17)
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is larger than the filling-box time scale Tf (3.12) but of the same order. To identify
the influence of the other parameters, we consider eight different situations in detail,
with essentially ‘large’ and ‘small’ values for each of the three areas at , ab and au. We
are particularly interested in the extent to which the reduced well-mixed M-M model
agrees with the more detailed stratified S-S model.

We have chosen the parameters deliberately to avoid certain complicated flow
regimes, which though potentially interesting, are beyond the scope of the present
study. For example, if the opening areas are chosen to be sufficiently small, so that
Hf ∞ (as defined in (3.8)) is sufficiently close to zero, exchange flow of buoyant fluid
may occur at opening ‘b’ between the two chambers. A similar phenomenon may
occur (particularly when the unforced chamber is sufficiently narrow compared to the
forced chamber, and Hf ∞ is sufficiently small) with the buoyant layer flowing from
unforced chamber into the forced chamber, thus leading to a recycling of buoyant
fluid (a phenomenon related to some of the flows considered in Wong & Griffiths
2001). It is straightforward to identify the parameter regimes where these phenomena
are predicted to occur, and we intend to report on the behaviour of the flow system
under those circumstances in the future.

4. Model results
We consider the eight different combinations of au = 1/2 and 2 (corresponding to

our experimental situation), a2
t , a

2
b = 1/10, and a2

t , a
2
b = 10. In figures 2–4, we compare

the important mean flow quantities predicted by the M-M and the S-S models for
the various flow geometries: the flow rates qt and qo out of the forced chamber and
unforced chamber; the buoyant layer depths hf and hu; and the mean (or well-mixed)
reduced gravities, which for the S-S model, are defined as

g′
f =

if

1 − hf

, g′
u =

iu

1 − hu

. (4.1)

As shown in figure 2, in general there is a quite close agreement between the flow
rates predicted by the well-mixed M-M model and the stratified S-S model, implying
that the predicted values of if and iu also agree closely. From (3.7), increasing at

increases the steady-state value of the flow rate through the system. Perhaps most
interestingly, increasing at and especially ab leads to significant transient increase
in qt , which is substantially larger than qo, particularly when the forced room is
relatively small compared to the unforced room (and hence au is large). This transient
response is due to the combination of two effects: the relatively rapid deepening of
the buoyant layer in the forced room, and the large cross-sectional area of the internal
openings allowing substantial flow from the forced room to the unforced room. For
the well-mixed M-M model, typically qt < qo eventually, so (B 3) is used to determine
the flow rates, and the M-M model predicts overshoot of the unforced layer interface,
although this overshoot is quite small.

As is apparent in figures 3 and 4, for the forced chamber, the well-mixed M-M
model also agrees closely with the stratified S-S model, as the plume dynamics rapidly
lead to the density distribution in the forced chamber being well-mixed. The interface
location in the forced chamber also exhibits overshoot, and typically converges to
a value somewhat less than that predicted for a single chamber flow (hl = 1/2).
When the interconnecting openings are relatively large, and so flow between the
two chambers is relatively large, the reduction in the steady-state interface height is
relatively small. However decreasing at can reduce the interface height substantially,
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Figure 2. Plots against time of qt (plotted with a solid line for systems with au = 1/2, and
with a dashed line for au = 2) and qo (dotted line for au = 1/2 and dot-dashed line for au = 2)
as predicted by the stratified S-S model (thick lines) and reduced M-M model (thin lines) for
systems with hl = 1/2 and: (a) a2

t = 0.1, a2
b = 0.1; (b) a2

t = 10, a2
b = 0.1; (c) a2

t = 0.1, a2
b = 10;

(d) a2
t = 10, a2

b = 10.

as in this case the controlling opening area A† ∼ At in (3.8). This reduction in turn

increases the steady-state value of g′
f substantially.

When a2
t is small, the system with a relatively small forced-chamber cross-sectional

area (i.e. au large, plotted with dashed lines) exhibits slightly more rapid deepening
and rapid increase in g′

f than the system with smaller au (plotted with solid lines).
This is due to the restriction of flow through opening ‘t’ leading to a disproportionate
amount of buoyant fluid remaining in the forced chamber, which leads both to
rapid deepening and more rapid increase in reduced gravity. The area of the lower
‘b’ opening also has an effect on the speed of convergence of the forced layer to its
steady-state value, particularly when at is large, although there is no effect of either au

or ab on the ultimate steady state in the forced chamber. As is apparent in figures 2(b)
and 2(d), smaller ab corresponds to a smaller peak value of qt , as the communication
between the two chambers is somewhat suppressed.

There are significant differences between the predictions of the two models for the
properties of the flow in the unforced chamber. For the stratified S-S model, there is
strong dependence of the ultimate steady states on all of the area parameters: at , ab

and au. In general, increasing au increases the steady-state values of hu and g′
u in such

a way that the steady-state value of iu = g′
u(1 − hu) is constant. When au is larger, the

buoyant layer tends to be shallower in the unforced chamber, and so the steady-state
reduced gravity is somewhat larger. The relative change in g′

u is largest when ab and
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Figure 3. Plots against time of the forced chamber interface location hf (plotted with a solid
line for systems with au = 1/2, and with a dashed line for au = 2) and the unforced chamber
interface location hu (dotted line for au = 1/2 and dot-dashed line for au = 2) as predicted
by the stratified S-S model (thick lines) and reduced M-M model (thin lines) for systems with
hl = 1/2 and: (a) a2

t = 0.1, a2
b = 0.1; (b) a2

t = 10, a2
b = 0.1; (c) a2

t = 0.1, a2
b = 10; (d) a2

t = 10,

a2
b = 10.

in particular at is small, as that corresponds to small values of the unforced chamber’s
buoyant layer depth 1 − hu, which exhibits large relative changes with au.

Although increasing ab tends to decrease both interface height and reduced gravity
at steady state, by far the strongest effects are associated with variations in at .
Increasing at , and thus allowing for increased volume flow between the two chambers
even at steady state, leads inevitably to a significant increase in the depth of the
unforced buoyant layer. This deeper layer typically also has a smaller reduced gravity.
Relatively more of its volume comes from the early, transient, peak of volume flow
through the upper opening, which has low reduced gravity since it comes from plume
fluid which has been diluted through entrainment by ambient fluid through virtually
all of its rise.

Furthermore, typically, the mean reduced gravity is eventually lower in the unforced
chamber than in the forced chamber, because the buoyant layer in the unforced
chamber always contains fluid of relatively low reduced gravity from early in the
flow evolution, when the plume has been strongly diluted. Essentially, the stratified
S-S model predicts widely varying relative depths of the two buoyant layers. Small
values of at (and thus little flow between the two chambers at early times) implies
that hu >hf , (figure 3a) while larger values of at (and to a lesser extent ab) and hence
larger flow rates qt imply substantially smaller values of hu (figure 3d).
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Figure 4. Plots against time of the mean or well-mixed forced chamber reduced gravity g′
f

(plotted with a solid line for systems with au = 1/2, and with a dashed line for au = 2) and
the mean or well-mixed unforced chamber reduced gravity g′

u (dotted line for au = 1/2 and
dot-dashed line for au = 2) as predicted by the stratified S-S model (thick lines) and reduced
M-M model (thin lines) for systems with hl =1/2 and: (a) a2

t = 0.1, a2
b = 0.1; (b) a2

t = 10,

a2
b = 0.1; (c) a2

t = 0.1, a2
b = 10; (d) a2

t = 10, a2
b = 10.

The predictions of the well-mixed M-M model are qualitatively different. The
reduced gravity of the unforced layer always converges to that of the forced layer. This
forces the interface location to be given by the simple formula (3.26), predicting that
hu > hf in all cases, which is qualitatively different from the S-S model, as shown in
figure 3. The M-M model predicts overshoot in the unforced layer’s interface location
in all cases, and a little variation in hu with the parameter au. Figure 4 shows that the
predictions for g′

u also depend weakly on au. For smaller values of at , convergence to
g′

f is somewhat slower, due to the restriction of flow between the two chambers.
For the S-S model, we also plot the evolution of the vertical profiles of reduced

gravity g′
f and g′

u in figures 5 and 6 respectively at t = n/2, n= 1, 2, . . . , 20, for
systems with au = 1/2, hl = 1/2, and the four previously used choices of at and ab.
(The interfaces move downwards slightly more rapidly in the forced chamber and
conversely more slowly in the unforced chamber when au = 2, as in each case the down-
wards propagation is relatively faster in the relatively smaller chamber.) The evolution
of the reduced gravity profile in the forced chamber is very similar to the emptying
filling box behaviour in a single chamber previously considered in LLS90. Quite
rapidly, the buoyant layer becomes essentially well-mixed, and there is very little
vertical variation in density, and hence little impact on qt , hf and g′

f , and so it is
unsurprising that the predictions of the two models agree closely.
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Figure 5. Profiles of g′
f (z) predicted by the stratified S-S model at times t = n/2,

n= 1, 2, . . . , 20, for systems with au = 1/2, hl = 1/2, and: (a) a2
t =0.1, a2

b = 0.1; (b) a2
t = 10,
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b = 0.1; (c) a2

t =0.1, a2
b =10; (d) a2

t = 10, a2
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The predictions are markedly different for the profiles of g′
u in the unforced

chamber. When at is small, the steady-state buoyant layer in the unforced chamber is
relatively shallow, while the steady-state value of g′

f is relatively large. Therefore small
quantities of fluid with relatively rapidly varying reduced gravity are deposited in the
unforced chamber. This variation leads to a strongly stratified final steady state in
the unforced chamber. At steady state the unforced chamber has no vertical motion
(unlike the forced chamber) and so non-zero values of ∂ρ/∂z are not inconsistent with
∂ρ/∂t = 0 in (2.5). Indeed, although their structure is somewhat more complicated
for larger values of at and ab (associated with the non-trivial variation with time of
the flow rates through the openings), all the profiles of g′

u appear to exhibit strong
vertical stratification for all times.

The time scale of convergence towards steady state is the filling-box time scale Tf

for the two chamber system as defined in (3.12). Therefore, in circumstances where the
cross-sectional area of the unforced chamber is substantially larger than that of the
forced chamber (i.e. Af � Au as defined in the description of figure 1) the approach
to steady state of the forced chamber is substantially delayed by the presence of
the large, yet finite unforced chamber. This phenomenon of delayed convergence
may have relevance in real buildings, where smaller chambers (e.g. offices, shops) are
connected to larger atria. The character of the steady state in the unforced chamber is
typically stratified, and depends strongly on the time-dependent evolution of the flow.
Particularly when the upper opening ‘t’ is relatively large, the unforced chamber’s
buoyant layer is deeper at steady state than the buoyant layer in the forced chamber.
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Figure 6. Profiles of g′
u(z) predicted by the stratified S-S model at times t = n/2,

n= 1, 2, . . . , 20 for systems with au = 1/2, hl = 1/2 and: (a) a2
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Indeed, large area openings connecting an unoccupied atrium to a forced chamber
lead inevitably to extensive contamination of the unoccupied atrium. Our models
predict that this behaviour occurs even when the exterior openings are designed to
be of an adequate size for the buoyant layer in the forced chamber to be shallow, and
the atrium has a relatively large cross-sectional area. This counter-intuitive behaviour
appears to be due to the fact that the stratified buoyant layer in the unforced chamber
is constituted of fluid from the buoyant layer in the forced chamber from different
stages of the forced chamber’s development. Subsequent use or occupation of the
unforced chamber would then have to cope with this prior contamination by buoyant
fluid from the forced chamber. For the buoyant fluid from the forced chamber to be
flushed from the unforced chamber, it is essential for the openings to the exterior to
be sufficiently large compared to the upper opening between the two chambers. This
naturally involves a trade off, as such a design will inevitably lead to a deeper buoyant
layer in the forced chamber. It thus appears sensible to avoid large disparity in the
effective area A� of the exterior openings and the upper interconnecting opening ‘t’
to optimize the depth of each space which is not contaminated by buoyant fluid.

5. Laboratory experiments
To identify which of the numerical models we have discussed predicts better a real

physical system, we have conducted a sequence of eight laboratory experiments. As
is conventional, the experiments were conducted in an inverted geometry and used a
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Experiment hl ap au hv hf ∞ hof ∞ hsu∞ hmu∞ hou∞

A 0.52 1 0.5 0.078 0.49 0.49 0.50 0.66 0.52
B 0.57 1 0.5 0.078 0.53 0.54 0.56 0.69 0.57
C 0.61 1 0.5 0.080 0.57 0.58 0.61 0.72 0.62
D 0.65 1 0.5 0.078 0.61 0.58 0.65 0.74 0.66
E 0.52 1 2 0.079 0.49 0.53 0.56 0.66 0.57
F 0.61 1 2 0.079 0.57 0.53 0.65 0.72 0.56
G 0.65 0.17 0.5 0.079 0.40 0.32 0.95 0.97 0.77
H 0.57 1.5 0.5 0.083 0.55 0.58 0.48 0.63 0.48

Table 1. Experimental parameter values.

descending saline plume. The experimental apparatus consisted of a Perspex tank of
internal dimensions 91.6 cm × 30.5 cm × 31.1 cm. A thin internal partition divided the
tank such that au = 1

2
or au = 2. This internal partition contained a series of 2.54 cm

diameter openings along its top and bottom. The chambers could also communicate
with the external reservoir fluid through openings drilled along the tank’s upper and
lower surfaces. For simplicity, we considered circumstances where the external and
internal partition openings were equal in size.

We chose A� to vary from 6.08 cm2 to 18.3 cm2. The applicable non-dimensional
parameters for the eight experiments are presented in table 1, where at = ab = ap .
The chambers were suspended in a much larger reservoir (237.5 cm by 115.6 cm by
118.7 cm). This reservoir tank was filled to a depth of approximately 110 cm and
the experimental tank was positioned such that its top surface was approximately
11 cm below the free interface. This top surface was fitted with a nozzle through
which a saline solution was injected. The solution was itself fed from a constant
pressure head overhead tank. Flow rates were controlled via a quarter-turn valve and
measured using a rotameter. Red food colouring was added to the saline solution for
the purposes of flow visualization.

For the experiments reported upon here, Qs ranged from 1.8 to 1.9 cm3 s−1. Bs

ranged from 80 cm4 s−3 to 91 cm4 s−3. The nozzle design (due to Dr Paul Cooper, see
Hunt & Linden 2001 for a more detailed discussion of the design) minimized the
vertical adjustment length over which the flow became fully turbulent. We corrected
for the ‘effective origin’ hv (see Caulfield & Woods 1995), defined as

hv ≡
(

Q2
s

λ3G′
sH

5

)1/5

. (5.1)

The effective origin hv (also listed in table 1) defines the distance below the source
over which a point-source plume, with the same buoyancy flux as the source, would
have to rise to have the same volume flux as the source volume flux. We have verified
that, due to the small value of the source volume flux, more sophisticated corrections
(e.g. the asymptotic ‘virtual origin’ correction suggested by Hunt & Kaye 2001) or
the results of a full calculation, considering the source volume flux and momentum
flux explicitly, (as discussed in Woods et al. 2003 for the single chamber flow) lead
to variations in predictions of interface height well within the range of experimental
error.

Before a regular filling-box flow was established, a transient ‘slumping’ phase was
encountered whereby the discharged plume fluid ‘slosh[ed] up the sidewalls of the
box’ (Kaye & Hunt 2004) then subsequently collapsed into a layer of approximately
uniform thickness (Hunt et al. 2001). Ambient fluid was entrained directly into this
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contaminated layer. The initial density of this contaminated layer was smaller than
that anticipated from the S-S model equations of § 3, which assume that a filling-
box flow was established instantaneously. Whereas some fraction of this contaminated
fluid was quickly re-entrained into the plume, the remaining portion was advected into
the unforced chamber where it was either discharged through the external opening
or accumulated in the expanding layer of dense fluid. Some non-trivial ‘imprint’ of
this initial transient mixing was thus maintained in the unforced chamber, even in
the long-time limit t → ∞, which should lead to a divergence from the predictions
of the stratified S-S model. Eventually a filling-box flow was observed, and the flow
approached steady state on the expected time scale Tf .

We measured the steady-state interface locations in each chamber, which we
determine using the ‘maximum gradient’ method of Kaye & Hunt (2004). In table 1,
we list both the measured and the predicted steady-state locations for the interfaces
in both the forced and unforced chamber for the eight different experiments. The
predicted steady state of the interface in the forced chamber hf ∞ can be compared
with the equivalent value of hl (defined in (2.7) for a single chamber flow) and the
observed interface location (adjusted with the effective origin) hof ∞.

As expected, the presence of the unforced chamber reduces the height of the
interface above the source. This effect is most marked in the case of experiment
‘G’, when at is relatively small, and so the pressure loss through opening ‘t’ is most
significant, as a† is dominated by at . In general, the S-S model accurately predicts
the interface location in the forced chamber. The r.m.s. error between the observed
measurements and the predictions of the S-S model is approximately 30 % of the r.m.s.
error between the observed measurements and the predictions of the single chamber
model, and so it appears possible to identify the effect of the unforced chamber
quantitatively. (The well-mixed M-M model predicts the same interface location as
the S-S model.)

In table 1, we also list the steady-state interface height in the unforced chamber
predicted by the stratified S-S model hsu∞, the interface height predicted by the well-
mixed M-M model hmu∞, and the observed interface height (adjusted with the effective
origin) hou∞. In general, the stratified S-S model predicts the ultimate interface height
much more accurately than the well-mixed M-M model, although for experiment ‘G’,
both models significantly underestimate the observed depth of the buoyant layer in the
unforced chamber. This mismatch occurs when the openings in the interconnecting
partition are relatively small compared to the openings to the exterior, and the
unforced chamber is relatively small compared to the forced chamber. The smaller
interconnecting opening leads to a relatively high velocity through the opening ‘t’ into
the unforced chamber, and since the chamber has a small cross-sectional area, this
relatively high velocity fluid is likely to lead to some overturning.

Nevertheless, the stratified S-S model is a much better predictor of the actual
interface location, with the r.m.s. error between the experimental observations and
the predictions of the S-S model being approximately 50% of the r.m.s. error between
the experimental observations and the predictions of the well-mixed M-M model.
The M-M model always predicts that the buoyant layer in the unforced chamber
is shallower than the buoyant layer in the forced chamber, and the experimental
evidence shows that this is an unjustified assumption. The evidence points strongly
towards the requirement that, in general, the buoyant layer in the unforced chamber
is stratified. For example, in experiment ‘H’, where the interconnecting openings were
relatively large, the buoyant layer in the unforced chamber is both predicted by the
S-S model and observed experimentally to be deeper than the buoyant layer in the
forced chamber. Therefore, for the flow between interconnected chambers over a
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wide range of parameter values, the buoyant layer depth in the unforced chamber is
well-predicted by the full transient S-S model.

6. Conclusions
We have considered both the transient and steady-state flows which can develop in

two interconnected chambers of the geometry shown in figure 1. The steady-state flow
in the ‘forced’ chamber (containing an isolated point source of buoyancy flux) depends
not only on the single chamber effective area A� (defined in (2.4)), combining the
lower exterior inflow opening ‘i’ in the forced chamber (with area Ai) and the upper
exterior outflow opening in the unforced chamber (with area Ao), but also the top
opening ‘t’ in the interconnecting partition (with area At ). The effect of the pressure
drop associated with the flow through opening ‘t’ is to reduce the apparent effective
area of the openings to A† � A� (and thus to increase the depth of the steady-state
buoyant layer) compared to a single chamber flow with the same external openings,
as considered in LLS90 (cf. (3.8) and (2.4)). Convergence towards this steady state
occurs on the filling-box time scale Tf for the two chamber system as defined in
(3.12).

Although the steady state in the forced chamber is well-mixed, and has no
dependence on the previous time evolution of the flow, the steady state in the
unforced chamber is typically stratified, and depends strongly on the time-dependent
evolution of the flow towards its final steady state, as well as on the areas of all
the openings and the cross-sectional areas of the two chambers. This is qualitatively
different behaviour from that predicted by a model that assumes that the fluid in
each chamber is always well-mixed. Such well-mixed models predict that the buoyant
layer in the unforced chamber is always shallower than the buoyant layer in the
forced chamber. However, evidence from analogue laboratory experiments supports
the assumption that it is essential to track carefully the evolving stratification in the
unforced chamber if the steady-state layer depth is to be predicted correctly, capturing
well a situation where the unforced chamber’s buoyant layer depth is actually deeper
than the forced chamber’s buoyant layer depth, which is well-predicted by a stratified
model.

Of course, the flow considered here is extremely idealized. For example, we make
the strong simplifying assumptions that the forced plume is a source of buoyancy
alone, that the flow through the various openings is uni-directional for all time, and
that the two chambers are initially filled with ambient fluid. Also, we assume that
the openings are of infinitesimal vertical depth, which is clearly impossible for the in-
terior openings. Therefore, there will inevitably be a pressure variation across the
opening, and it is more appropriate to consider the pressure at the midpoint of the
opening (see Hunt & Linden 2001 for a more detailed discussion). Indeed, it is much
more likely that either exchange flows (as considered in Phillips & Woods 2004) or
reversing flows (due perhaps to source volume flux associated with forced air heating
or air conditioning systems, as discussed by Woods et al. 2003) may occur at different
stages of the flow evolution, and that there is at least some buoyant fluid in either or
both chambers initially.

Such contamination at the start of the flow evolution and variation in source
conditions qualitatively modifies the ultimate steady state in the unforced room, due
to complex interactions between the associated draining flows, blocking flows and
filling-box flows associated with the plume in the forced chamber. In all probability,
interactions of these kinds modify the paths connecting initial states to ultimate steady
states. As a way to develop a more applicable understanding of real ventilation flows
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in multi-chamber buildings, we aim to report on our analysis of the dynamical effects
of these interactions in due course.
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Appendix A. Flow through opening ‘b’ for the S-S model
Considering the flows into the unforced chamber, if the flow remains stratified in

the unforced chamber,

d

dt
Iu = G′

f (H )(Qt − Qo) if Qt � Qo, (A 1a)

= −G′
u(H )(Qo − Qt ) if Qt <Qo, (A 1b)

where G′
f (H ) and G′

u(H ) are the reduced gravities at the top of the forced and
unforced chambers respectively. Iu increases if and only if Qb < 0, and the depth
of the buoyant layer in the unforced chamber increases. At least initially, Qt >Qo.
Therefore, Qb < 0, which implies that Pu(0) > Pf (0), and so (3.9) applies. It is thus
impossible for Iu to exceed A2

†If , its steady-state value, and so as claimed in § 3.2, Iu

approaches its steady-state value from below. If Iu >A2
†If , Qt < Qo, and so Iu would

have to decrease. This argument applies for all values of Iu > A2
†If , thus implying that

there is no possible time evolution by which Iu could grow transiently larger than
A2

†If while still being required to approach this value at steady state.

Appendix B. Flow through opening ‘b’ for the M-M model
If the flow is assumed to be well-mixed in the unforced chamber, the appropriate

equation for the evolution of the buoyancy integral Iu becomes

d

dt
Iu = G′

f (H )Qt − G′
uQo, (B 1)

where G′
f (H ) is the reduced gravity at the top of the forced chamber, and G′

u is the
(well-mixed) reduced gravity of the unforced chamber. Provided G′

f (H ) is sufficiently
large compared to G′

u, it is entirely possible for Iu to increase when Qt <Qo, at least
initially, and hence the argument presented in Appendix A does not apply. Therefore,
it is possible for the buoyancy integral Iu to be sufficiently large for the pressure Pf (0)
in the forced chamber at Z = 0 to be greater than the pressure Pu(0) in the unforced
chamber at Z =0, and so the flow Qb through opening ‘b’ is positive (i.e. from the
forced to the unforced chamber) and is given by

Qb = Ab

(
2

ρe

[Pf (0) − Pu(0)]

)1/2

= Ab

[
Q2

t

A2
t

− 2(If − Iu)

]1/2

, (B 2)

using (3.2). Using this expression, rather than (3.9), the system is now closed, and
using the same non-dimensionalization and approach as in the main body of the text,
the flow qo must satisfy
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q2
o =

iu

µ2
+

[
1 + 2

(
a2

t − a2
b

)][
1 + 2a2

t

]
[a2

† if − iu] − 4a2
biu

µ2
[
1 + 4

(
a2

b + a2
t

)
+ 4

(
a2

b − a2
t

)2]
+

[
16a4

bi
2
u + 16a2

b

(
1 + 2a2

t

)(
a2

† if − iu
)(

a2
biu − a2

t if
)]1/2

µ2
[
1 + 4

(
a2

b + a2
t

)
+ 4

(
a2

b − a2
t

)2] . (B 3)

All the other volume fluxes can be determined from (3.15). Using (B 2), it is possible
to establish that the requirement that qo > qt implies that

iu � µ2q2
o � a2

† if , (B 4)

and so a2
† if − iu � 0 in this circumstance.
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